算法分析读后
A Microeconomic Data Mining Problem:Customer-Oriented Catalog Segmentation
本文讨论了greedy算法的不足,只能找到局部极值,因为牵扯到the heuristic nature of the quality criteron,而又没有回顾backtracking (after sub-optimization或前瞻look ahead能力
改进办法适用randomize algorithm in a two-step approach(Random-Product-Fit):
1. Use greedy to find segments
2. resulting catalogs and corresponding clusters are iteratively optimized by randomlyre placing one catalog product bya non-catalog product (Random-Product-Switch).
本文讨论了greedy算法的不足,只能找到局部极值,因为牵扯到the heuristic nature of the quality criteron,而又没有回顾backtracking (after sub-optimization或前瞻look ahead能力
改进办法适用randomize algorithm in a two-step approach(Random-Product-Fit):
1. Use greedy to find segments
2. resulting catalogs and corresponding clusters are iteratively optimized by randomlyre placing one catalog product bya non-catalog product (Random-Product-Switch).
Labels: computer tech, 读书笔记
0 Comments:
Post a Comment
<< Home